本田i-MMD插电式混动详解
在汽车混动领域,本田深耕已久。从1999年开始本田就开始了混动汽车的推广,到如今已经有20年的技术积累。这二十年里为了满足市场的变化和顾客的多样性选择
以下为文章全文:(本站微信公共账号:cartech8)
汽车零部件采购、销售通信录 填写你的培训需求,我们帮你找 招募汽车专业培训老师
在汽车混动领域,本田深耕已久。从1999年开始本田就开始了混动汽车的推广,到如今已经有20年的技术积累。这二十年里为了满足市场的变化和顾客的多样性选择,本田的混动系统已经扩散到各个重要的车型,从亲民的Fit(参数|图片)到高端的NSX(参数|图片)都能看到混动系统的身影,今年还扩大到了MPV车型中,艾力绅(参数|图片)),产品可选择性变得更加多样。此外,基于本田i-MMD混动系统全面升级而来的i-MMD插电混动系统也将在明年正式亮相中国市场,根据日本本田技研所的工程师介绍,这套以i-MMD为基础的插电混动系统(PHEV),日常行驶基本实现纯电动化,可以称之为无限接近EV的全新插电式混动系统。 ◆序章:从本田混动车推广历史讲起 为了能让大家更好的了解本田新发布的这套i-MMD插电混动系统,我想有必要简单的为大家讲解一下本田在混动车领域的推广情况,知根知底,才能对未来新的技术有更全面的了解。 总体来说IMA设计十分巧妙,同时因为电机功率小,体积也很小,因此可以较好的集成在发动机舱中,所以这套机构最大的特点就是结构设计简单、重量轻、布局紧凑。 基于第七代思域(参数|图片)(海外版)打造的思域Hybrid车型,也曾经进入过国内市场,它也是既INSIGHT(参数|图片)之后,本田推出的第二款混合动力车型。思域Hybrid同样搭载了以发动机作为主动力,以电机作为辅助动力的IMA混合动力系统。 IMA这套系统中,电机的地位很低,用现在的眼光看有点类似48V BSG电机的功能,不同的是,这套系统切换的是工况模式,而不是动力分配模式。简单来说,本田IMA混合动力系统一共有5种工况模式,其中车辆在起步加速阶段、急加速以及高速行驶阶段发动机与电动机共同出力,可以提升车辆的动力性能。当车辆低速行驶时,发动机气缸关闭,车辆能进行全电力驱动,但速度不能高于约40公里/小时。当车辆在普通加速阶段,完全由发动机驱动,电动机退出工作,并用发动机的动能进行充电。 这套系统有个较大的问题是上面提到的发动机关闭,全电力驱动工况。这里的发动机关闭其实是关闭供油系和进排气,而此时电机和曲轴是相连的,电机实际是带动曲轴转动,输出动力,此时消耗的能量会更多,纯电行驶里程很低。 IMA的出现,标志着本田正式在混动领域开始发力,同时对于本田来说也是起点,另外这套系统很多研发理念包括集成化、小型化等对后面的iMMD系统产生了深远影响,甚至这次发布的i-MMD插混系统仍然能看到IMA时代的某些研发理念。 ◆根本:本田混动的“精神领袖” 随着技术的革新和市场的改变,本田显然意识到了IMA的局限性,同时和丰田的THS相比,本田的IMA也确实占不到便宜,一个更高效、而动力性更好的混动系统呼之欲出,这就是本田i-MMD系统。这套系统大约在2010年前后亮相,结构上由原来的单电机变成了双电机形式,布局方面仍然紧凑的和发动机结合在一起,安装在发动机舱中。实际上,我们之前曾经详细的介绍和测试过本田的i-MMD系统,本篇文章我们只做简单的回顾,这样有利于大家更清楚的理解i-MMD的插电式混动系统(插电式混动本质上讲就是i-MMD系统的升级),同时也能更好的明白i-MMD插电式混动系统的工作原理。 i-MMD系统如果按照布局结构来划分,可以分为两部分:一个是位于发动机舱的部分,另一个是位于车后部(后备厢到后轴之间)部分。其中发动机舱主要是i-MMD系统的动力系统和传动系统。后备厢则是动力电池(锂离子)装置。 在非插电的混动系统世界里,i-MMD系统的逻辑非常独特,如果说丰田是依靠发动机和电机进行不同比例的混动,那么i-MMD系统更像是依靠不同行驶模式进行切换。 可以看到,EV模式下就是以电动机进行驱动,而且由于发动机直联式的离合器和更大功率电机的加入,纯电动模式下i-MMD系统的发动机可以完全不参与工作了,这样避免了之前IMA里动力的额外损耗。不过即使是i-MMD系统,纯电动模式下的行驶里程也很短,比如2016款混动版本雅阁的电池只有1.3kWh,我们之前在30km/h测试纯电行驶(不开空调),也只有1.77km。 混动模式则是标准的串联模式,就是有点像增程的感觉,发动机不参与直接的车轮驱动,而是通过带动发电机产生电流,和电池中的电流一起驱动电动机工作,最终带动车辆前行。 只有在高速巡航的时候,发动机才会直接驱动车轮,此时发动机可以保持在最佳转速区间,同时达到一个良好的油耗表现。 本田i-MMD系统中,电机占据的作用更重,因此电机的最大功率或者扭矩更出色,而日常使用中,更偏向电机的直接输出,发动机有点类似增程的作用。 丰田的THS更偏向发动机驱动车辆,电动机更多的是辅助,加速时辅助、起步时辅助等等,这些辅助更多是让发动机处于一个经济的转速区间,从而提升燃油经济性。 ◆新征程:无限接近纯电动的插电系统 HEV车型由于电池和电机功率的限制,纯电续航里程有限,因此为了更好的适应市场的发展,纯电续航里程更长的插电式混动系统应运而生。本田技研所在去年广州车展发布了相关信息,这次在广州进行了更详细的说明。 同时插电版本在此基础上为PCU(动力控制单元)配置上了优化系统电压的VCU(电压控制单元),同时加上高功率大容量电池和充电器。 下面我从电机开始进行详细说明。i-MMD插电式混动同样采用了双电机的形式,这两个电机的类型也和普通的iMMD一样,一部是驱动用、一部是发电用,其中发电用的电机和现款雅阁混动上的发电用电机是一样,而驱动电机由于需要更大的功率和扭矩,因此相比普通的i-MMD系统中的驱动电机会变得更强大。 驱动电机的制造方式也进行了改变,由往圆形绕组方式变为方形线圈,这使得电机总体积中线圈的占比从原来的48%上升到60%,而电机总体实现了23%的小型化,功率密度比以往(相比现款混动雅阁)提高到1.4倍,扭矩密度提高到1.3倍。电机功率上升必然需要更好的冷却,i-MMD插电式混动版本在电机散热方面采用了双油泵的设计,一个小油泵+一个大油泵,小油泵为发电机服务,大油泵为驱动电机服务。 相当于系统总体的电压和电流都发生了改变,因此需要对PCU整体进行改变。总的来说i-MMD插电式混动在PCU方面的改变很多,也很有创新性,其中最重要的是VCU(电压控制单元)的创新和改进。 VCU功率提高了,才能让各个电动化组件运行的更高效,同时本田制定了纯电模式下最高时速160km/h的目标,这需要扩大纯电驱动模式下的使用范围,这些都需要VCU的支持,因此如何提高VCU功率成了本田工程师考虑的首要问题。 本田工程师们首先想到的是对整个元器件回路进行改进,过去的耦合电感采用了一相的设计,通过增加回路是可以增大功率的,但这种方式也有一个问题,就是产生磁泄露,这样会对整个组件上的其他单元产生干扰,可能会造成电子功能出现误判,因此本田的工程师对整体结构进行了改变。 通过把一相变两相的方式,提高整体功率,同时将两个线圈的内部设计成T型的结构,通电后,漏磁既可以进行抵消,这样就解决了在一个组件上布置更多传感器而不受影响的问题,同时还能继续保持组件保持小型化。 通过最终的努力,i-MMD插电式混动版VCU的功率相比现款雅阁混动提高了3.3倍,并保证了硬件部分可以大多数和雅阁混动进行通用,包括控制单元的硬件等,当然,因为增加了一相电路,所以VCU部分发生了改变,不过总体来说还是可以有效控制成本,达到综合的平衡。 接着我们来看电池和动力单元的相关信息。插电式混动系统为了得到相比混动车型更长的续航里程,同时会使用更多的电池组,电池组的增加必将影响空间布置。 有了大容量电池,热管理系统就变得尤为重要。动力电池的工作和寿命受温度影响极大,优秀的热管理系统可以大幅度提升电池的使用寿命。本田i-MMD插电式混动系统在这方面也下了不少功夫,主要的改变在两个方面,首先是将电池模块由风冷改为水冷,其次是在整个水冷系统中加入了三通阀的设计。 风冷变水冷就不必多说了,主要聊聊三通阀使用后的冷却方式的改变。这种改变主要集中在驾驶和充电时。 通过这种设计,水冷系统可以有效的冷却电池和高压电池组件,同时通过切换回路,可以提升电池的耐久性。 除此之外,小型化依然是i-MMD插电式混动系统的重要议题,比如电机的设计、PCU等等很多组件的改变其核心都是为了高效率和小型化。 那么和丰田的THS相比,同样是HEV改PHEV,两者有什么特点呢?我们先从丰田说起。目前国内市场上丰田的PHEV车型是雷凌双擎E+(还有姊妹车卡罗拉双擎),这台车的混动系统是由THS第三代系统改进而来。 从布局上看,插电版本的THS(第三代)和传统的THS系统没有太多改变,包括电池布置、电机布置等,而大容量电池的使用其实对后轴及后备厢空间有一定影响。即使是第四代THS系统仍然没有对布局进行大的改变,和本田的插混布局相比,显然有一定差距。 然后我们看动力输出方面。为了保证PHEV车型更多的动力输出,第三代THS在动力分配行星齿轮组基础上增加了一组减速行星齿轮组,降低了MG1(发电的电机)和MG2(驱动的电机)的转速差,从而可以让车辆在纯电模式下以更高的车速行驶。同时将第二代的链式传动改为齿轮传动,增加了传动效率。从结果上看,这种组件的改变确实可以得到一个不错的纯电动力输出,在纯电动情况可以达到125km/h,可以满足日常使用。不过和本田iMMD的插电混动相比,其改动的组件确实更多,同时最终的输出也确实略逊一筹(本田插混纯电下的速度为160km/h)。 至于第四代THS,它对整个动力分配行星齿轮组进行了结构上的改变,从同轴变成了异轴,这样使整个组件变得更小,同时因为异轴的布置,电动机的动力可以直接通过齿轮传输,而不需要经过负载的行星组,提高了传递效率。所以从动力输出形式上看,第四代THS和本田iMMD的插电混动各有特色。 总得来说,丰田THS最早研发理念更偏向HEV,其发动机为主力而电机部分为辅助,同时有一套复杂的行星齿轮组,如果将HEV变成PHEV,更高的电动机功率输出以及调速范围就会成为限制,而本田iMMD从研发之初就看重电动机的作用,发动机更像是一台增程器,因此从HEV变成PHEV更简单,只需要对动力输出组件和控制及动力单元进行改进即可,整体零部件通用率会更高。 注:本次技术交流发动机部分的技术未进行讨论,所以文章内没有提及,但确定的信息是将采用1.5L自然吸气发动机。 ◆体验篇:简单聊聊i-MMD插电式混动系统的驾驶感受 上面说到的都是i-MMD插电式混动系统的理论知识,那么这套系统在实际使用中是怎样的呢?我之前简单的体验了Clarity PHEV,通过试驾过程,跟大家简单聊聊i-MMD插电式混动系统的驾驶模式。 首先有一点可以肯定,这套系统绝大多数都是一台电动机驱动的车子,其EV模式相当广泛。一般来说,如果正常城市通勤,即使深踩油门,发动机也不介入。 只有在高速下的巡航时,发动机才会直接对车轮进行驱动,日本工程师坦言发动机直驱的情况比较少,大多数还是处于混动模式,在混动模式下,以Clarity PHEV为例,它的续航里程可以达到超过800km(JC08工况),和普通燃油车没有任何区别,甚至还更加出色。 |
文章网友提供,仅供学习参考,版权为原作者所有,如侵犯到
你的权益请联系542334618@126.com,我们会及时处理。
会员评价:
共1条 发表评论发表我的评论