中国汽车工程师之家--聚集了汽车行业80%专业人士 

论坛口号:知无不言,言无不尽!QQ:542334618 

本站手机访问:直接在浏览器中输入本站域名即可 

您当前所在位置: 汽车设计 > 查看内容

冷板散热器的设计步骤!

文章作者头像
发布:lichengwan 来源:
PostTime:13-12-2023 19:47
冷板类似于风冷或者自然散热中的散热器,是液冷设计中相对可变的组件,其它诸如泵、快接头、膨胀罐、脱气罐、过滤器甚至换热器等多数都可以通过计算几个关键参数来在既有成熟产品系列中选型来实现。因此,本章重点阐 ...

以下为文章全文:(本站微信公共账号:cartech8)


汽车零部件采购、销售通信录       填写你的培训需求,我们帮你找      招募汽车专业培训老师

冷板类似于风冷或者自然散热中的散热器,是液冷设计中相对可变的组件,其它诸如泵、快接头、膨胀罐、脱气罐、过滤器甚至换热器等多数都可以通过计算几个关键参数来在既有成熟产品系列中选型来实现。因此,本章重点阐述冷板散热器的设计。

设计冷板散热器时,基本考量因素如下:

l  通过在一定体积空间内加大固体与流体的接触面积实现换热强化;

l  通过导热界面材料接触发热源;

l  存在流体与固体的接触面;

l  发热源热量先传递到冷板,然后再传递到冷板中流动的液体介质,带出系统。

很显然,冷板的设计步骤和要考量的因素与风冷或自然散热设备中的散热器类似。只不过冷板面临的流体介质是液体,而强迫风冷或自然散热中散热器面临的流体介质则为气体。从如下的设计步骤,也可明显看出这一点:

1 计算流量

开始设计冷板之前,需要估算系统散热所需的流量,类似于风冷散热中,在开始系统风道设计之前,需先估算风量的需求。

与风扇风量计算公式相同,液体工质流量的估算依据仍然是能量守恒定律:

Q = P / density / Cp / Δt

式中Cp为流体工质的比热容,density为流体工质密度

举例:工质为水,发热量为5KW,进出水口温升5℃

流量需求: Q = P / density / Cp / Δt = 5000 / 992 / 4179 / 5 =  2.41 ? 10-4 m3/s = 0.241 L/s

注:水的物性参数参考温度为25℃。

2 确定冷板材质

除去成本、可获得性、可加工性等任何设计都需要考虑的因素之外,冷板材质的选定还应关注如下几点:

  • 导热系数

常见的冷板材质是铜(合金)和铝(合金),这两种金属的导热系数都比较高。实际上,电子产品中充当主要散热功能的金属结构件,绝大多数材质都是铜(合金)和铝(合金)。

  • 与液态工质之间的化学相容性

与泵类似,冷板也必须保证其和液态工质之间具备化学相容性。通常,液态工质和冷板之间的电化学反应在所难免,为了降低腐蚀速率,可以在工质中添加缓蚀剂。 缓蚀剂又称为腐蚀抑制剂(anti-corrosive corrosive inhibitor),是指以适当的浓度和形式存在于环境(介质)中时,可以防止或减缓材料腐蚀的化学物质或复合物。当确定了系统中与液冷工质直接接触的材料后,可以根据材料属性选择合适的缓蚀剂。

表11-5常见冷板材质与工质相容性表[8]



注:此处冷板材质是指与液冷工质接触的固体材质,表中打√的表示能够相容。

  • 密度

在要求轻量化设计的产品中,这就要使用密度更低的材料。在这种情况下,铝成为非常广泛的选择。如新能源汽车动力电池包内的冷板,通常材质就是铝合金。

  • 凝固点和沸点

液冷工质需要保证在产品使用的环境温度范围内保持液态。如果工质凝固点太高,有可能导致外界气温较低时凝固,工质无法形成循环流动,系统失效;如果工质沸点太低,则可能会在外界温度较高时,液体沸腾生成气体,导致系统失稳。

3 流道设计

风冷系统中,一般会通过更改内部发热元件布局,增加或删减结构件来约束空气的走向,进而改变产品内部热量转移方向和转移效率。液冷系统中,液体的走向可以直接通过管路来严格约束。

类似于风冷系统中的空气,作为移热介质,液冷系统中的液体的走向也会直接影响热量的转移方向和转移效率。对冷板进行流道设计时需要考虑如下因素:

  • 热源分布:流体应尽可能接近发热源,降低扩散热阻;

  • 结构避位:属于结构设计范畴,流道需要与冷板上的固定孔保持安全距离;


     


图11-17 流道应当避开冷板上密布的固定孔

  • 均匀布局:流体应尽可能均匀地掠过冷板,有效利用散热面积。通常,距离流道越远,对散热的贡献越小;



图11-18 雪佛兰Volt动力电池中的铝制液冷冷板,液体均匀流过整个冷板

  • 控制流速:工质对散热器的冲蚀作用会随着流速的增加而恶化,而且流动的阻力也会迅速加大。但显然流速越大,对流换热系数越高。流速需要结合产品散热需求和可用空间,综合给定;

  • 尽量降低流阻:设计串并联流道,降低流动阻力,减少泄露风险;



图11-19 多流道并联的嵌管式冷板

  • 可加工性和成本;

  • 泄压和告警等设计:应在管路合理位置布置压力传感器和温度传感器,实现对系统的实时监测。当压力或温度异常时,采取必要的控制手段。

4 冷板类型及其优缺点

液冷系统适应的范围非常广,其应对的产品类型特点千变万化。不同需求下,就需要采用不同类型的冷板。根据工艺难度,常见的冷板可以分为如下几种:钻孔式,压管式,浮泡式,铣槽式,扩展表面式,微通道式等。其优缺点汇总如下:

表11-6常见冷板的优缺点





5 散热器的选择误区

用产品制造商提供的热阻来评估散热器性能

散热器的热阻是用来评估特定应用中散热器性能的最常用方法。如公式1所示,通过将散热片的热阻Rth乘以被冷却装置的耗散功率Q,再加上环境温度Tamb,可以确定装置的外壳温度Tc 。选择散热器的典型方法是首先使用公式1计算所需的散热器热阻,然后选择热阻小于或等于计算值的散热器。


公式(1)散热器制造商提供的热阻一般是通过一个方形热源的散热器测得的,通常是将一个具尺寸为25.4 mm x 25.4 mm的方形热源(固定热耗)连接到散热器基板底面中心,然后测量温差,通过公式1就能计算散热器的热阻。如果使用该方法测量的热阻值来选择散热器,经常会出现选择的散热器不符合散热需求的情况,这是因为散热器的热阻不是一个常数。同一散热器的热阻将随着热源相对于散热器基准面的大小而变化。如果您使用的热源明显小于制造商在测试实际散热器时使用的热源,则热阻值可能远远高于制造商的测试值。这是由于热量从热源区域流向散热器顶部表面时,由热扩散阻力导致的。相对于散热器的基板面积而言,热源面积越小,散热器的热扩散阻力越大,散热器的总热阻就越大。在强制对流冷却的情况下,对流扩散阻力对散热器的影响最为显著。


图1  散热器几何模型示意图图2为在强制对流冷却情况下,热源的尺寸与散热器热阻的关系曲线。散热器的外形尺寸如图1所示。散热器的长度为76.2毫米,热源的长度和宽度相同,并由Ls决定。流量为5 CFM,热源散发的热量为59 W,环境温度为30oC。


图2  热源尺寸对散热器热阻的影响散热器制造商提供的散热器的热阻值通常是针对长度为76.2毫米的散热器。需要注意的是,当散热器轮廓相同时,散热器的热阻不随长度(即散热器的深度)而线性增加。随着长度的增加,由于热源面积与散热器底部面积的比值减小,扩散阻力也会随之增加。这样部分表面积增加带来的传热收益被扩散阻力的增加所抵消。此外,随着散热器长度的增加,对流过程中散热器的传热效率也会降低。
  仅仅根据表面积来选择散热器
在确定散热器所需的表面积时,很多文章中通常会给出单位面积的散热值。这将让许多人以为简单地增加散热器的表面积就可以改善散热器的性能,而事实并非如此。散热器的性能不仅取决于表面积,还取决于散热器的所有相关尺寸,其中最关键的是散热翅片之间的间距。散热片之间的间距对散热片表面的散热速度有很大影响,这通常被称为传热系数h。表面积A和散热率h,决定了散热器的表面温度Ts,如公式2所示: 

公式(2)式中:Q是散热器的总散热量;随着翅片之间的间距在某一点减小,传热会随之恶化,这主要是由于热边界层厚度的增加。热边界层通常被描述为:散热器翅片表面附近的空气温度高于环境温度的区域。当空气进入翅片之间的空间并沿翅片长度方向生长时,热边界层最薄。翅片之间的间隔越近,热边界层与相邻翅片合并的越快。这将产生了较高温度的空气区域,从而降低了从散热器表面到翅片之间空气的热传递速率。为了获得最低的散热器温度和被冷却源的最低温度,必须在散热片的间隔和散热器的表面积之间取得平衡。


图3  散热片间距和长度对散热效率的影响热边界层的厚度也与传热率成比例,较短的散热器将比相同翅片间距和表面积的其他散热器具有更好的散热性能。
为了证明最佳翅片间距的重要性,我们来对比一下散热器热阻的变化与散热片的翅片数量之间的关系,如图1所示。散热器的底座垂直放置,散热器通过自然对流散热,在此算例中忽略辐射换热。热源的长度和宽度均为25.4mm,热源散发的热量为20W。图4显示了在自然对流工况下,翅片间距对散热器性能的影响。应当注意的是,当散热器翅片个数为8个、表面积为0.045m2时,散热器的热阻最低,而当散热器翅片个数15个、表面积为0.084m2时,散热器的热阻反而更高。


图4  散热器热阻随散热器翅片数量的变化
 使用最大风扇流量来估算散热器性能
冷却风扇制造商通常会在列出风扇性能时说明最大风扇流量,对于那些不熟悉风扇的人来说,这很容易产生误导。
如图5中所示,风扇的流速与风扇的压降成反比。当风扇的压降为零时,流速最大,而这仅仅是在风扇前方或后方没有障碍物时,允许空气自由流入和流出风扇时才会发生。一旦有障碍物放置在风扇前面,诸如散热器等等,风扇上就会有一些正压降,障碍物对来流空气阻挡越大,压降越大。图5显示了电子冷却中风机的PQ压力流量曲线图。通过风扇的压降越大,风扇提供的流量就越低。



图5  风扇、散热器P-Q曲线及风机工作点
散热器翅片的密度越大,空气的流动阻力就越大,从而导致风扇上的压降更高并且风扇提供的空气流量更低。风扇压力流量曲线与散热器压力流量曲线的交点,就是风机的工作点,如图5所示。要使得在某一风量下具有最大的散热量,必须选择合理的风扇和散热器尺寸,绝不可以使用风机的最大流量来评估散热性能。

电池资料

储能行业全套标准??????

2022-03-30



光伏储能一体机结构3D模型

2022-06-15



锂离子电池设计计算模板

2022-03-07



锂电池DFMEA分析表

2021-01-07



锂离子电池全套测试标准

2021-01-02



锂离子电池设计规范书

2020-12-29



锂电池PFMEA表

2020-12-26



新能源汽车换电站3D数据

2020-11-10



新能源车106项试验规范

2020-10-14



44页锂电池检测方法及标准

2020-12-08




[文章纠错]

文章网友提供,仅供学习参考,版权为原作者所有,如侵犯到

你的权益请联系qchjl_admin@126.com,我们会及时处理。

会员评价:

0 发表评论

渝公网安备 50010802001066号

QQ|手机版|小黑屋|Archiver|汽车工程师之家 ( 渝ICP备18012993号-1 )

GMT+8, 3-5-2024 04:03 , Processed in 0.184184 second(s), 23 queries .

Powered by Discuz! X3.5

© 2001-2013 Comsenz Inc.