汽车关键制造工艺——锻造
新材料在线 锻造在中国有着悠久的历史,它是以手工作坊的生产方式延续下来的。大概是在20世纪初。它才逐渐以机械工业化的生产方式出现在铁路、兵工、造船等行业中。
以下为文章全文:(本站微信公共账号:cartech8)

汽车零部件采购、销售通信录 填写你的培训需求,我们帮你找 招募汽车专业培训老师
锻造在中国有着悠久的历史,它是以手工作坊的生产方式延续下来的。大概是在20世纪初。它才逐渐以机械工业化的生产方式出现在铁路、兵工、造船等行业中。这种转变的主要标志就是使用了锻造能力强大的机器。 ![]() 图1 锻造[/b] 在汽车制造过程中,广泛地采用锻造的加工方法。随着科技的进步,对工件精度要求的不断提高,具有高效率、低成本、低能耗、高质量等优点的精密锻造技术得到越来越广泛的应用。依据金属塑性成形时的变形温度不同,精密冷锻成形可分为冷锻成形、温度成形、亚热锻成形、热精锻成形等,生产的汽车零部件包括:汽车离合器接合齿圈、汽车变速器的输入轴零件、轴承圈、汽车等速万向节滑套系列产品、汽车差速器齿轮、汽车前轴等。 ![]() 图2 常见的汽车锻件 [b]主要内容: 一、 锻造的定义和分类 二、 常见的锻造方法及其优缺点 三、 锻造缺陷及分析 四、 精密锻造在汽车工业中的应用 ······ 点击下方“阅读原文”查看完整资料 一、锻造的定义和分类 1、锻造的定义 锻造是一种利用锻压机械对金属坯料施加压力,使其产生塑性变形以获得具有一定机械性能、一定形状和尺寸锻件的加工方法,锻压(锻造与冲压)的两大组成部分之一。 通过锻造能消除金属在冶炼过程中产生的铸态疏松等缺陷,优化微观组织结构,同时由于保存了完整的金属流线,锻件的机械性能一般优于同样材料的铸件。相关机械中负载高、工作条件严峻的重要零件,除形状较简单的可用轧制的板材、型材或焊接件外,多采用锻件。 2、锻造的分类 按照生产工具不同,可以将锻造技术分成自由锻造,模块锻造,碾环和特种锻造。 自由锻:指用简单的通用性工具,或在锻造设备的上、下砧铁之间直接对坯料施加外力,使坯料产生变形而获得所需的几何形状及内部质量的锻件的加工方法。 模锻:指金属坯料在具有一定形状的锻模膛内受压变形而获得锻件。模锻可分为热模锻、温锻和冷锻。温锻和冷锻是模锻的未来发展方向,也代表了锻造技术水平的高低。 碾环:指通过专用设备碾环机生产不同直径的环形零件,也用来生产汽车轮毂、火车车轮等轮形零件。 特种锻造:包括辊锻、楔横轧、径向锻造、液态模锻等锻造方式,这些方式都比较适用于生产某些特殊形状的零件。例如,辊锻可以作为有效的预成形工艺,大幅降低后续的成形压力;楔横轧可以生产钢球、传动轴等零件;径向锻造则可以生产大型的炮筒、台阶轴等锻件。 按照锻造温度,可以将锻造技术分为热锻、温锻和冷锻。 钢的开始再结晶温度约727℃,但普遍采用800℃作为划分线,高于800℃的是热锻;在300~800℃之间称为温锻或半热锻,在室温下进行锻造的称为冷锻。用于大多数行业的锻件都是热锻,温锻和冷锻主要用于汽车、通用机械等零件的锻造,温锻和冷锻可以有效的节材。 根据锻模的运动方式,锻造又可分为摆辗、摆旋锻、辊锻、楔横轧、辗环和斜轧等方式。 3、锻造用料 锻造用料主要是各种成分的碳素钢和合金钢,其次是铝、镁、铜、钛等及其合金,铁基高温合金,镍基高温合金,钴基高温合金的变形合金也采用锻造或轧制方式完成,只是这些合金由于其塑性区相对较窄,所以锻造难度会相对较大,不同材料的加热温度,开锻温度与终锻温度都有严格的要求。 材料的原始状态有棒料、铸锭、金属粉末和液态金属。金属在变形前的横断面积与变形后的横断面积之比称为锻造比。 正确地选择锻造比、合理的加热温度及保温时间、合理的始锻温度和终锻温度、合理的变形量及变形速度对提高产品质量、降低成本有很大关系。 二、常用的锻造方法及其优缺点 1. 自由锻 自由锻是指用简单的通用性工具,或在锻造设备的上、下砧铁之间直接对坯料施加外力,使坯料产生变形而获得所需的几何形状及内部质量的锻件的加工方法。采用自由锻方法生产的锻件称为自由锻件。 ![]() 图3 自由锻 自由锻都是以生产批量不大的锻件为主,采用锻锤、液压机等锻造设备对坯料进行成形加工,获得合格锻件。自由锻的基本工序包括镦粗、拔长、冲孔、切割、弯曲、扭转、错移及锻接等。自由锻采取的都是热锻方式。 自由锻造工序 包括基本工序、辅助工序、精整工序。 自由锻造的基本工序:镦粗、拔长、冲孔、弯曲、切割、扭转、错移及锻接等,而实际生产中最常用的是镦粗、拔长、冲孔这三种工序。 辅助工序:预先变形工序,如压钳口、压钢锭棱边、切肩等。 精整工序:减少锻件表面缺陷的工序,如清除锻件表面凹凸不平及整形等。 ![]() ![]() 图4 镦粗 ![]() 图5 拔长 ![]() 图6 冲孔 优点: 锻造灵活性大,可以生产不足100kg的小件,也可以生产大至300t以上的重型件; 所用工具为简单的通用工具; 锻件成形是使坯料分区域逐步变形,因而,锻造同样锻件所需锻造设备的吨位比模型锻造要小得多; 对设备的精度要求低; 生产周期短。 缺点及局限性: 生产效率比模型锻造低得多; 锻件形状简单、尺寸精度低、表面粗糙;工人劳动强度高,而且要求技术水平也高; 不易实现机械化和自动化。 2. 模锻 模锻是指在专用模锻设备上利用模具使毛坯成型而获得锻件的锻造方法。此方法生产的锻件尺寸精确,加工余量较小,结构也比较复杂生产率高。 ![]() 图7 模锻 按所用设备的不同分类:锤上模锻、曲柄压力机模锻、平锻机上模锻及摩擦压力机上模锻等。 锤上模锻最常用的设备是蒸汽-空气模锻锤、无砧座锤和高速锤等。 锻模模膛: 根据其功用不同可分为模锻模膛和制坯模膛两大类。 ![]() 图8 锤上模锻所用的锻模(1—锤头;2—上模;3—飞边槽;4—下模;5—模垫;6,7,10—紧固楔铁;8—分模面;9—模膛) 1)模锻模膛 (1) 预锻模膛: 预锻模膛的作用是使毛坯变形到接近于锻件的形状和尺寸,这样在进行终锻时,金属容易填满模膛而获得锻件所需要的尺寸。对于形状简单的锻件或批量不大时可不设预锻模膛。预锻模膛的圆角和斜度要比终锻模膛大得多,而且没有飞边槽。 (2) 终锻模膛: 终锻模膛的作用是使毛坯最后变形到锻件所要求的形状和尺寸,因此,它的形状应和锻件的形状相同;但因锻件冷却时要收缩,故终锻模膛的尺寸应比锻件尺寸放大一个收缩量。钢锻件收缩量取1.5%。另外,沿模膛四周有飞边槽,用以增加金属从模膛中流出的阻力,促使金属充满模膛,同时容纳多余的金属。 2)制坯模膛 对于形状复杂的锻件,为了使毛坯形状基本符合锻件形状,以便使金属能合理分布和很好地充满模膛,就必须预先在制坯模膛内制坯。 ![]() 图9 弯曲连杆锻造过程 (1) 拔长模膛: 它是用来减少毛坯某部分的横截面积,以增加该部分的长度。拔长模膛分为开式和闭式两种。 ![]() 图10 拔长模膛:(a)开式;(b)闭式 (2) 滚压模膛: 它是用来减少毛坯某一部分的横截面积,以增加另一部分的横截面积,从而使金属按锻件形状来分布。滚压模膛分为开式和闭式两种。 ![]() 图11 滚压模膛:(a)开式;(b)闭式 (3) 弯曲模膛: 对于弯曲的杆类模锻件,需用弯曲模膛来弯曲毛坯。 ![]() 图12 弯曲模膛 (4)切断模膛: 它是在上模与下模的角上组成一对刀口,用来切断金属。 ![]() 图13 切断模膛 优点: 生产效率较高。模锻时,金属的变形在模膛内进行,故能较快获得所需形状; 能锻造形状复杂的锻件,并可使金属流线分布更为合理,提高零件的使用寿命; 模锻件的尺寸较精确,表面质量较好,加工余量较小; 节省金属材料,减少切削加工工作量。在批量足够的条件下,能降低零件成本。 缺点及局限性: 模锻件的重量受到一般模锻设备能力的限制,大多在7OKg以下; 锻模的制造周期长、成本高; 模锻设备的投资费用比自由锻大。 3. 辊锻 4、胎模锻 ······ 点击下方“阅读原文”查看完整资料 三、锻造缺陷及分析 锻造用的原材料为铸锭、轧材、挤材及锻坯。而轧材、挤材及锻坯分别是铸锭经轧制、挤压及锻造加工成的半成品。一般情况下,铸锭的内部缺陷或表面缺陷的出现有时是不可避免的。再加上在锻造过程中锻造工艺的不当,最终导致锻件中含有缺陷。以下简单介绍一些锻件中常见的缺陷。 1. 由于原材料的缺陷造成的锻件缺陷通常有: 表面裂纹 表面裂纹多发生在轧制棒材和锻制棒材上,一般呈直线形状,和轧制或锻造的主变形方向一致。造成这种缺陷的原因很多,例如钢锭内的皮下气泡在轧制时一面沿变形方向伸长,一面暴露到表面上和向内部深处发展。又如在轧制时,坯料的表面如被划伤,冷却时将造成应力集中,从而可能沿划痕开裂等等。这种裂纹若在锻造前不去掉,锻造时便可能扩展引起锻件裂纹。 折叠 折叠形成的原因是当金属坯料在轧制过程中,由于轧辊上的型槽定径不正确,或因型槽磨损面产生的毛刺在轧制时被卷入,形成和材料表面成一定倾角的折缝。对钢材,折缝内有氧化铁夹杂,四周有脱碳。折叠若在锻造前不去掉,可能引起锻件折叠或开裂。 结疤 结疤是在轧材表面局部区域的一层可剥落的薄膜。 结疤的形成是由于浇铸时钢液飞溅而凝结在钢锭表面,轧制时被压成薄膜,贴附在轧材的表面,即为结疤。锻后锻件经酸洗清理,薄膜将会剥落而成为锻件表面缺陷。 层状断口 层状断口的特征是其断口或断面与折断了的石板、树皮很相似。 层状断口多发生在合金钢(铬镍钢、铬镍钨钢等),碳钢中也有发现。这种缺陷的产生是由于钢中存在的非金属夹杂物、枝晶偏析以及气孔疏松等缺陷,在锻、轧过程中沿轧制方向被拉长,使钢材呈片层状。如果杂质过多,锻造就有分层破裂的危险。层状断口越严重,钢的塑性、韧性越差,尤其是横向力学性能很低,所以钢材如具有明显的层片状缺陷是不合格的 亮线(亮区) 亮线是在纵向断口上呈现结晶发亮的有反射能力的细条线,多数贯穿整个断口,大多数产生在轴心部分。 亮线主要是由于合金偏析造成的。轻微的亮线对力学性能影响不大,严重的亮线将明显降低材料的塑性和韧性。 非金属夹杂 非金属夹杂物主要是熔炼或浇铸的钢水冷却过程中由于成分之间或金属与炉气、容器之间的化学反应形成的。另外,在金属熔炼和浇铸时,由于耐火材料落入钢液中,也能形成夹杂物,这种夹杂物统称夹渣。在锻件的横断面上,非金属夹杂可以呈点状、片状、链状或团块状分布。严重的夹杂物容易引起锻件开裂或降低材料的使用性能。 碳化物偏析 碳化物偏析经常在含碳高的合金钢中出现。其特征是在局部区域有较多的碳化物聚集。它主要是钢中的莱氏体共晶碳化物和二次网状碳化物,在开坯和轧制时未被打碎和均匀分布造成的。碳化物偏析将降低钢的锻造变形性能,易引起锻件开裂。锻件热处理淬火时容易局部过热、过烧和淬裂。 铝合金氧化膜 铝合金氧化膜一般多位于模锻件的腹板上和分模面附近。在低倍组织上呈微细的裂口,在高倍组织上呈涡纹状,在断口上的特征可分两类:其一,呈平整的片状,颜色从银灰色、浅黄色直至褐色、暗褐色;其二,呈细小密集而带闪光的点状物。 铝合金氧化膜是熔铸过程中敞露的熔体液面与大气中的水蒸气或其它金属氧化物相互作用时所形成的氧化膜在转铸过程中被卷人液体金属的内部形成的。 锻件和模锻件中的氧化膜对纵向力学性能无明显影响,但对高度方向力学性能影响较大,它降低了高度方向强度性能,特别是高度方向的伸长率、冲击韧度和高度方向抗腐蚀性能 白点 白点的主要特征是在钢坯的纵向断口上呈圆形或椭圆形的银白色斑点,在横向断口上呈细小的裂纹。白点的大小不一,长度由1~20mm或更长。白点在镍铬钢、镍铬钼钢等合金钢中常见,普通碳钢中也有发现,是隐藏在内部的缺陷。白点是在氢和相变时的组织应力以及热应力的共同作用下产生的,当钢中含氢量较多和热压力加工后冷却(或锻后热处理)太快时较易产生。 用带有白点的钢锻造出来的锻件,在热处理时(淬火)易发生龟裂,有时甚至成块掉下。白点降低钢的塑性和零件的强度,是应力集中点,它像尖锐的切刀一样,在交变载荷的作用下,很容易变成疲劳裂纹而导致疲劳破坏。所以锻造原材料中绝对不允许有白点。 粗晶环 粗晶环常常是铝合金或镁合金挤压棒材上存在的缺陷。 经热处理后供应的铝、镁合金的挤压棒材,在其圆断面的外层常常有粗晶环。粗晶环的厚度,由挤压时的始端到末端是逐渐增加的。若挤压时的润滑条件良好,则在热处理后可以减小或避免粗晶环。反之,环的厚度会增加。 粗晶环的产生原因与很多因素有关。但主要因素是由于挤压过程中金属与挤压筒之间产生的摩擦。这种摩擦致使挤出来的棒材横断面的外表层晶粒要比棒材中心处晶粒的破碎程度大得多。但是由于筒壁的影响,此区温度低,挤压时未能完全再结晶,淬火加热时未再结晶的晶粒再结晶并长大吞并已经再结晶的晶粒,于是在表层形成了粗晶环。 有粗晶环的坯料锻造时容易开裂,如粗晶环保留在锻件表层,则将降低零件的性能。 缩管残余 缩管残余一般是由于钢锭冒口部分产生的集中缩孔未切除干净,开坯和轧制时残留在钢材内部而产生的。 缩管残余附近区域一般会出现密集的夹杂物、疏松或偏析。在横向低倍中呈不规则的皱折的缝隙。锻造时或热处理时易引起锻件开裂。 2. 备料不当产生的缺陷及其对锻件的影响 3. 加热工艺不当常产生的缺陷 4. 锻造工艺不当常产生的缺陷 5. 锻后冷却工艺不当常产生的缺陷 6. 锻后热处理工艺不当常产生的缺陷 7. 锻件清理工艺不当常产生的缺陷 四、精密锻造在汽车工业中的应用 |
文章网友提供,仅供学习参考,版权为原作者所有,如侵犯到
你的权益请联系542334618@126.com,我们会及时处理。
会员评价:
共0条 发表评论